Convergence of Numerical Time-Averaging and Stationary Measures via Poisson Equations
نویسندگان
چکیده
Numerical approximation of the long time behavior of a stochastic differential equation (SDE) is considered. Error estimates for time-averaging estimators are obtained and then used to show that the stationary behavior of the numerical method converges to that of the SDE. The error analysis is based on using an associated Poisson equation for the underlying SDE. The main advantages of this approach are its simplicity and universality. It works equally well for a range of explicit and implicit schemes, including those with simple simulation of random variables, and for hypoelliptic SDEs. To simplify the exposition, we consider only the case where the state space of the SDE is a torus, and we study only smooth test functions. However, we anticipate that the approach can be applied more widely. An analogy between our approach and Stein’s method is indicated. Some practical implications of the results are discussed.
منابع مشابه
Numerical solution and simulation of random differential equations with Wiener and compound Poisson Processes
Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...
متن کاملThe Approach of Convergence to Stationary State of Multi Server Queue with Balking (TECHNICAL NOTE)
This investigation deals with multi server queue with balking. The customers arrive in poisson fashion and independent of time, under the assumption that system is initially empty. The number of customers in the system is stochastically increasing and distributed in steady state (stationary state) as required. The expressions for the measure of the speed of convergence from transient state to s...
متن کاملNumerical Solution of Multidimensional Exponential Levy Equation by Block Pulse Function
The multidimensional exponential Levy equations are used to describe many stochastic phenomena such as market fluctuations. Unfortunately in practice an exact solution does not exist for these equations. This motivates us to propose a numerical solution for n-dimensional exponential Levy equations by block pulse functions. We compute the jump integral of each block pulse function and present a ...
متن کاملSelection of Intermodal Conductivity Averaging Scheme for Unsaturated Flow in Homogeneous Media
The nonlinear solvers in numerical solution of water flow in variably saturated soils are prone to convergence difficulties. Many aspects can give rise to such difficulties, like very dry initial conditions, a steep pressure gradient and great variation of hydraulic conductivity occur across the wetting front during the infiltration of water. So, the averaging method applied to compute hydraul...
متن کاملNumerical Solution of Optimal Control of Time-varying Singular Systems via Operational Matrices
In this paper, a numerical method for solving the constrained optimal control of time-varying singular systems with quadratic performance index is presented. Presented method is based on Bernste in polynomials. Operational matrices of integration, differentiation and product are introduced and utilized to reduce the optimal control of time-varying singular problems to the solution of algebraic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 48 شماره
صفحات -
تاریخ انتشار 2010